A machine learning approach to product review disambiguation based on function, form and behavior classification
نویسندگان
چکیده
Online product reviews have been shown to be a viable source of information for helping customers make informed purchasing decisions. In many cases, users of online shopping platforms have the ability to rate products on a numerical scale, and also provide textual feedback pertaining to a purchased product. Beyond using online product review platforms as customer decision support systems, this information rich data source could also aid designers seeking to increase the chances of their products being successful in the market through a deeper understanding of market needs. However, the increasing size and complexity of products on the market makes manual analysis of such data challenging. Information obtained from such sources, if not mined correctly, risks misrepresenting a product’s true success/failure (e.g., a customer leaves a one star rating because of the slow shipping service of a product, not necessarily that he/she dislikes the product). The objective of this paper is three fold: i) to propose a machine learning approach that disambiguates online customer review feedback by classifying them into one of three direct product ACCEPTED MANUSCRIPT
منابع مشابه
Image Classification via Sparse Representation and Subspace Alignment
Image representation is a crucial problem in image processing where there exist many low-level representations of image, i.e., SIFT, HOG and so on. But there is a missing link across low-level and high-level semantic representations. In fact, traditional machine learning approaches, e.g., non-negative matrix factorization, sparse representation and principle component analysis are employed to d...
متن کاملOptimizing the Grade Classification Model of Mineralized Zones Using a Learning Method Based on Harmony Search Algorithm
The classification of mineralized areas into different groups based on mineral grade and prospectivity is a practical problem in the area of optimal risk, time, and cost management of exploration projects. The purpose of this paper was to present a new approach for optimizing the grade classification model of an orebody. That is to say, through hybridizing machine learning with a metaheuristic ...
متن کاملAPPLICATION OF THE HYBRID HARMONY SEARCH WITH SUPPORT VECTOR MACHINE FOR IDENTIFICATION AND CALSSIFICATION OF DAMAGED ZONE AROUND UNDERGROUND SPACES
An excavation damage zone (EDZ) can be defined as a rock zone where the rock properties and conditions have been changed due to the processes related to an excavation. This zone affects the behavior of rock mass surrounding the construction that reduces the stability and safety factor and increase probability of failure of the structure. This paper presents an approach to build a model for the ...
متن کاملارتقای کیفیت دستهبندی متون با استفاده از کمیته دستهبند دو سطحی
Nowadays, the automated text classification has witnessed special importance due to the increasing availability of documents in digital form and ensuing need to organize them. Although this problem is in the Information Retrieval (IR) field, the dominant approach is based on machine learning techniques. Approaches based on classifier committees have shown a better performance than the others. I...
متن کاملDebt Collection Industry: Machine Learning Approach
Businesses are increasingly interested in how big data, artificial intelligence, machine learning, and predictive analytics can be used to increase revenue, lower costs, and improve their business processes. In this paper, we describe how we have developed a data-driven machine learning method to optimize the collection process for a debt collection agency. Precisely speaking, we create a frame...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Decision Support Systems
دوره 97 شماره
صفحات -
تاریخ انتشار 2017